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Surface phase transitions in nematic liquid crystals with planar anchoring
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We calculate the thermodynamic phase diagram of a semi-infinite nematic liquid crystal system above its
bulk ordering temperature for the case of planar boundary conditions. The latter are assumed to favor a
uniaxially ordered surface state, characterized by a negative orientational order parameter, at sufficiently high
temperatures. All symmetry-allowed terms either linearly or quadratically proportional to the tensor order
parameter characterizing the transition to a biaxially ordered surface state are included in the analysis. The
Euler-Lagrange equations obtained by minimizing the Landau—de Gennes free energy expression are solved
exactly by numerical methods. We find that both first- and second-order transitions are possible; they occur in
different sections of the thermodynamic phase boundary separated by a line of tricritical points. In the second-
order region, we evaluate the effect of fluctuations on this quasi-two-dimensional system by introducing the
Berezinskii-Kosterlitz-Thouless mechanism, and calculating its effect on the phase boundary and nature of the
transition. Possible ways of observing this phase transition experimentally are considered and some potentially
useful techniques notefiS1063-651X%97)09103-4

PACS numbg(s): 64.70.Md, 61.30.Cz

[. INTRODUCTION this case, the invariance of the surface interaction is the same
as in (a), but the axis of the molecules is normal to the
The effect of a bounding surface upon nematic liquidpPrincipal axis of the alignment. This configuration is de-
crystal (NLC) ordering has been of interest for both funda- Scribed by a negative orientational order parameter.

mental and technological reasons. In the former area, NLC;fttIThP? h%mog%neouE%h caset_ isllcommog_ ex?herirfnenta:!y, bl]ft

have been utilized as relatively simple model systems i Itie has been done theoretically regarding the formation o

which different types of interactions between a boundingsurface layers. The homeotropic case has been studied theo-
retically by several researcherfl-3] who found a

surface and anisotropic molecules can be studied. TeChn(t’émperature-surface coupling phase diagram which re-
logically, flxmg the orientation of_llqwd crystal molgcules at sembled that of a positive anisotropy bulk NLC phase dia-
c_eII surfaces is a key element in the design of display degram in the temperature-applied field pldsé Later, Schick
vices, and must therefore be properly understood and cofjs nointed out that this phase diagram can be described us-
trolled. ) ing the language of wettin§6,7]. Experimentally, Miyano

As a consequence of the above interests, a great deal p4]yas the first to observe surface-induced order in NLC's at
experimental and theorgncal work has bgen carrled_ out IHemperatures above the nematic-isotrohél) transition
order to understand the influence of nematic-surface interagemneratureT,, . In another experimental study, Chenal.
tions on local ordering at an |_nterfac¢. It has become appary] studied the wetting behavior of the NLC homologous
ent that the symmetry breaking which occurs at a surfacgias of alkyl cyanobiphenylsCB, n=5, 6, 7, 8, and 9n
Iea?s to (;i V?j”etyd of mteredstm% phenomena, Intc)mdmgserved as a practical way of tuning the strength of the NLC-
surface—ln. uce g ordering and phase transitions DetWeel,tace interaction using an evanescent wave ellipsometry
surface-oriented states. . . technigue. Their results showed partial orientational wetting
_ Theoretically, the nematic-solid boundary has been invesg¢ \he grface for the case of 5GB0] and complete wetting
t!gated primarily for the S|mple_st types O_f surface interaC-¢,. 6cp to 9CB. The complete wetting behavior became
tions; namely, those preferentially orienting the molecule ore apparent as was increased
either normal or parallel to the surface. Three distinct surface Theoretically, a traceless secdnd—rank tensor is an appro-
orientations are, in ppnmple, posr?lble_. o erred priate macroscopic description of the order parameter for the
| (6}) Homeotr_oplc_algnme?t, Wh erelnf the Iprehe_rre mo—h case of a NLC. Among possible choices, an experimentally
ecular quentatl_on IS norma to_t € surface. in this case,_t Convenient one is obtained by taking the position-dependent
surface interaction is necessarily invariant under all rotationg;; . |actric tensore2(x) and subtracting one-third of its trace

| , e i

about an axis normal to the surface and the latter is a P om each of its main diagonal elements. The desired order

cipal axis of the alignment. ) . ;
(b) Homogeneoualignment, wherein the preferred orien- parameter;; () is thus given by 1]

tation is along an axis lying in the surface. Here both the b 1 5
normal and the preferred in-plane axis are principal axes. € =€~ 311(€)3 . (1)
(c) Planar alignment, wherein the molecules lie preferen-
tially in the surface plane, but lack a preferred orientation. InThis tensor is symmetric, and can be diagonalized in its prin-
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cipal axis basis at any point. If any two of the resulting
eigenvalues are equal, the system is said tarbaxial. Oth- \’/ A
erwise, it isbiaxial. Clearly, if the system is everywhere F\';\_ ,\’ I
uniaxial above a specific temperature, then a symmetry- _l_\\/} |‘I1'\II, z
breaking phase transition occurs when biaxiality appears be- L I-IN Z (NI
low this temperature. ’\\[\,% \} \"’T,L >
In terms of¢;; , the standard Landau—de Gennes expres- f_/\\\\ ’,’,’l,\
sion for the bulk free energy density, which is assumed to be \// N vl \’I
valid in the vicinity of the NI phase transition [41,12 / \
_1ra2 2 242
Opl €] =2[acij T Cuefj it Cokij i il — Beij €jeia t v( ) ') FIG. 1. Schematic views of the semi-infinite space occupied by

the liquid nematic liquid crystal system. The left side illustrates the
Here € y=de;; /9%, and all repeated indices are summedmc"eC‘_J'ar disftributior) on the _bounQing surface for th(_e case o_f in_-
over. Ohly the coefficierd is regarded aélinearly) tempera- plane isotropic or_dermg; the right sm_ie shows the equivalent distri-
ture dependent; the other coefficienfs ¢, c,, andc,) are  Pution when the in-plane symmetry is broken.
taken to be constant in the temperature region of interest.
The above expression fay, can be simplified by intro-
ducing the following scaled parametgds3]:

in the x-y plane. The relations between the rescaled surface
parameters ¥,v,,v,) and the real physical quantities are
given in Sec. lll.

The total scaled free ener er unit area inx lane
wi=(BI\Bye;, it=3yipa, 1=(36%B%, . TC P "ep

1€=(3ylB%cy, p=cylc. 3 ® o

Flul=Fp[p]+Fdul=| dz fy+ [ dz f. (6)

Here, in particularf is a reduced temperature variable with 0 0

t=1 corresponding td'=T,,, and ¢ sets the length scale

over which the order parameter magnitude changes iz the ) A
S ; X : shown schematically in Fig. 1.

direction. It will characterize the thickness of the ordered . : .

. - Since the scaled order parametgy is a symmetric trace-
surface layer. Because the bend elastic constant of nematli:esSS tensor, it can, at any poit be diagonalized in a local
is typically twice the value of the twist constant, the physi- rincipal ax,is S st,em in i/eir)ms of two gcalar functiqnéz)
cally reasonable range pfis of order one. Realistic choices gnd F()z) That |ys we can write o
of the other parameters are discussed in Sec. Il D. M) ’

Both integrals converge for all>1. The physical system is

In terms of these parameters, the scaled bulk free energy _
density becomes px)=p(2)
f _ 1,2 20,2 1 —p(2)+n(z) 0 0
bl ] = altaeij + E°(uij kP asij ik i) ] _ % 0 — u(2)— 7(2) 0
- \/Eﬂijﬂjkﬂki+(ﬂi2j)2- 4 0 0 2u(2)
To obtain the total scaled free energy density, we must (7

supplementf, by a similarly scaledsurface contribution
fs. We shall be concerned, in this work, with a semi-infinite
system bounded, a=0, by a flat surface upon whigbla-
nar boundary conditiongpply. To second order in the re-
duced order parametegr;; , the scaled surface free energy ca
density is given by 14,15

The functionsu(z) and 7(z) are determined by minimizing

F for any particular system. Note that whef(z)=0 or

+3u(z), the phase is uniaxial; otherwise, it is biaxial.

In this work we obtain the surface phase diagram for the

se of planar anchoring, characterized by a negative surface

orientational order state which arises due to the random pla-

nar molecular alignment. Experimentally, the negative sur-

face orientational order state was observed both using an
X &8(z—1zyp), (5) evanescent wave elipsometry technid@é] and using deu-

terium NMR [17].

wherea,8=1,2, andz, is an arbitrarily small offset which The first workers to theoretically discuss the possibility of

insures that the surface interaction is in the half-spacdéaving surface-induced biaxial order in NLC’s with planar

z>0. Only one term linear in the order parameter is allowedboundary conditions were Sluckin and PoniewieréRP

for planar boundary conditions; it is given by threterm in  [14,18. They used a Landau—de Gennes formalism in which

fs. The other three terms are the symmetry-allowed quathe coefficient, in the bulk free energfsee Eq(2)] was set

dratic contributions. If the analysis is restricted to phases irequal to zerdor equivalently,p—« in Eq. (4)]. Further,

which the surface normal is one of the principal axes ofonly the linear surface coupling terrhproportional to

uij , the v term in f [ u] is not independent of those pro- v—see Eq(5)] was included irf[ u]. A phase transition to

portional to v, and v,, and may therefore be suppressed.a biaxially ordered surface state abolg was obtained by

This will be done henceforth. In addition, it will be assumedrequiring thatv be positive. An interesting feature of the

that all order parameter configurations of interest are unifornphase diagram was the existence of a line of continuous

flm]=[vpast 3(— Visaptapt Vaptijiji+ vapaisiz)]
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phase transitions from a high-temperature uniaxial surfacthis term doesiot change the topology of the surface phase
state to a biaxial one. SP noted that the order in the surfacdiagram, but simply shifts the transition boundary by an
biaxial layer has the same symmetry as in the two-amount essentially proportional to the magnitude and sign of
dimensional XY model. This phase transition, which de- V2.
scribes symmetry breaking within the bounding plane, is The outline of our paper is as follows: In Sec. Il A, we
therefore in principle described by the Berezinskii- present the general Landau theory framework for our calcu-
Kosterlitz-ThoulessBKT) [19-21 mechanism. It was ar- lation, including the details of the surface interaction poten-
gued by SP that their neglect of tog elasticity term in the tial being considered. Some technical points regarding the
Landau—de Gennes bulk free energy did not change the tdwmerical procedure employed to solve the coupled nonlin-
pology of the phase diagram. On the other hand, howevegar differential equations describing the equilibrium states
the addition of quadratic surface coupling terms could lead tére noted. Next, in Sec. Il B, a restricted surface interaction
changes in its topolog}18]. potential is considered, and the associated thermodynamic
The case of finitg was stuided by L'vov, Hornreich, and phase diagram calculated. In Sec. Il C, we return to the gen-
Allender[22], and, later, Kothekar, Allender, and Hornreich €ral expression for the surface potential, and show that the
[23]. They obtained, for physically interesting values pof results of Sec. Il B are essentially unchanged. Then, in Sec.
(=1), the correct Landau theory surface phase diagram iH D. the role played by thermodynamic fluctuations near the
the (t-») phase plane, and also calculated the BKT transitiorPhase transition is analyzed and shown to result in a two-
boundary due to fluctuation effects. Kothekar, Allender, anclimensional transition of the BKT type. A phase boundary
Hornreich showed numerically that a transition to a biaxial@PPropriate to this type of transition is calculated and com-
phase does not occur for sufficiently largavhenp=<0. An  Pared with that obtained from the mean-field Landau theory.

analytic proof that this crossover point is exactlypat0 is ~ Finally, in Sec. lll, we discuss our results, compare them
given by us in Appendix A. with those reported in earlier work, and consider possible

A first attempt to go beyond the linear term approxima-Ways (_)f verifying them experimentally. Technical details are
tion for the surface coupling was made by Hornreich, Kats9iven in two appendices.
and Lebede\24] who, however, considerednly the qua-
dratic surface term proportional t@,>0 (to favor in-plane Il. THEORY
molecular orientationin the scaled surface free enerjge.,
they setv=v,=0 in Eq. (5)]. In our work, we broadened
these earlier studies by considering a more realistic model. As discussed in Sec. I, we are interested in a NLC system
Specifically, we included in the scaled surface free energwhich fills the half-space>0 and interacts via a surface
terms both linear and quadratic jn; [see Eq(5)]. Experi-  potential with thez=0 boundary(see Fig. 1L Assuming that
mentally, both types of terms are always present, and thethe surface interactions are short range in character, the total
relative magnitudes cannot be fixed independently. It isfree energy of the system is well modeled by integrating over
therefore important to determine whether the uniaxial-biaxiala sum of bulk and surface free energy densifigsnd f,
surface phase transition reported in the series of papers digrmich are given in a suitably scaled Landau—de Gennes for-
cussed above occurs under conditions which, experimentallynalism in Eqs(4) and(5). When no bulk ordering is present
are more realistic. We used Edg) and (5) for the scaled (j.e., t>1) and the relevant order parameter configurations
bulk and surface free energy densities, respectively. Ougre uniform in thex-y plane, the total scaled free energy is
analysis was restricted to configurations in which the surfacgiven by Eq.(6).
normal was a principal axis of the tensor order parameter. Again noting that the term itig proportional tov; [see
Therefore, without loss of generality, we could sgt=0.  Eq.(5)] does not contribute whenis a principal axis of the

Note that, to our knowledge, this is the first StUdy in which order paramete‘uij(z)' we substitute Eq(?) into Eqs(4)_
both linear and quadratic surface terms are included in thee) and obtain

analysis, and the additional symmetry-alloweg contribu-
tion to the scaled surface free energy is explicitly considered. 1 1 ) ,

Our study was carried out in two steps. In the first, we Folé= Jo dilatu?—p+pt+ 51+ 5p)(u)) %+ pun?
ignored thev, term in the scaled surface free energy density,
considering only the contributions proportional tcand ;. +E3uP P+ Sttt s '+ 5 ()%, 8
The complete mean-field phase diagram in the-{,) ther-
modynamic space was then obtained forl by exactly
solving the coupled nonlinear Euler-Lagrange differential F /¢é=
equations for the order parameter with appropriate boundary
conditions. This was done numerically by employing a soft- 9)
ware codeg(COLNEW) [25,26 specifically developed to solve
such problemgmultipoint boundary value problems for a Here uo=pu(z=0), no=7n(z=0), {=2z/¢ is a reduced co-
coupled system of ordinary differential equatipriehe long  ordinate in thez direction, and a prime denotes derivation
wavelength in-plane fluctuations characteristic of BKT phasevith respect tof.
transitions were then considered, and their effects upon the It will be convenient to use new surface coupling con-
mean-field phase diagram calculated. stants which are linear combinations of and v,. We shall

In the second step, the fully isotropic surface contributioncall themv; andv, and define them in terms of the original
proportional tov, was also considered. It was shown thatparameters by

A. Landau theory in the general case

2
2 2
%W’«o‘*’(_ gritzv)ugta(—vit ) mgl.



(10a

Vi=V1— V2,

’;2: %Vz . (10b)
In terms of these new parameters, t;l71éterm in Eq.(9) is
dependent only upoB, andnot uponv,, while the 3 term
in this equation has the same functional form, withand
v, now replaced by, andv,, respectively. Further, from
EqQ. (10, whenv,=0, v;=7;.

The equilibrium order parameter componept6l) and
7({) are determined by minimizing = F,+ F¢ with respect
to u and 5. This yields two coupled, nonlinear, differential
Euler-Lagrange equations

(1+5p)n"=tu—6u’+8u’+27*+5uy’, (113

7'=tp+ ¢+ 12un+8u?n. (11b

While =0 is a trivial solution of these equationgith
appropriate boundary conditions—see below is not al-

tion minimizing the free energy.
Since we are interested in the regitel where no bulk
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7' (0)=\tn(0), (14D
where( is a large but otherwise arbitrary value of

Exact numerical solutions of the Euler-Lagrange equa-
tions, together with their accompanying boundary condi-
tions, were found in two stages. In the first, the isotropic
term v, was arbitrarily set equal to zero. This corresponds to
a direct combination of the two cases considered previously,
i.e., those in which the bounding potential was described by
either av [14,18,22,230r av, [24] surface term. The results
from this part of our study can thus be directly compared
with those reported previously. Subsequently, the effect of
including a nonzera, term on the phase diagram was con-
sidered.

B. Caser,=0

We now consider the special case in which only two (
v,=7,) of the three allowed surface coupling parameters are
nonzero. The third ¢,) will be taken equal to zero in this
part of the analysis. This does not affect the expression for
the bulk scaled free energy, which remains as in @&).

From Egs.(9) and (10), however, the scaled surface free

energy reduces to

ordering occurs, the order parameter describing the system

asymptotically approaches that of the disordered or isotropic

state far from the/=0 boundary. The boundary conditions
at /= are therefore

u({=2)=p'({=2)=0, (12a

n({=x)=1n'({=*)=0. (12b)

The {=0 boundary conditions are obtained by integrating

the variational equations in an infinitesimal region about thi
point. This procedure yield2,24,27

2
"(¢=0)= ———| — -1+ ,
M (é, ) (1—|—%p) \/€V+( V1+V2)lu’0

(133

7' ({=0)=—2v17,. (13b

S

FolAE= = vpo— §ypid— ¥t (15)
J6

The surface couplings andv, are taken to be positive.
As noted, this restricted model includes, as special cases,
those studied previously by Hornreich, Kats, and Lebedev
[24], where only the quadratic surface couplingwas con-
sidered(i.e., v=7,=0, so thafr,=»,) and that extensively
analyzed by Sluckin and Poniewiergki4,1§, L'vov, Horn-
reich, and Allendef22], and Kothekar, Allender, and Horn-
reich [23], where only the linear surface coupling was in-
cluded (i.e., v,=v,=0). As we shall see, adding the
quadraticy, term to the linear surface coupling one fiy
tends to favor biaxial ordering in the thermodynamic phase
space, thereby expanding the region in this space in which a
biaxially ordered surface state is energetically preferred. This
is due to the final term in Eq9), which couplesy, to the
biaxial order at the surface. It provides the mechanism
whereby biaxial ordering, under appropriate conditions, low-
ers the system’s free energy.

When both linear and quadratic surface terms are present, As noted, the Euler-Lagrange equatiofisd) cannot be

Egs. (11), together with the accompanying boundary condi-

tions, Egs.(12) and (13), cannot be solved analytically. In

solved analytically. We therefore solved this pair of coupled
non-linear differential equations fqr(¢) and »({) numeri-

order to solve this coupled pair of nonlinear differential cally using COLENEwW [25,26]. This code is invoked via a

equations, we therefore employedLENEW [25,26. How-
ever, in order to efficiently utilize theoLENEW procedure

simple calling routine, which includes as subroutines the dif-
ferential equations to be solved and the boundary conditions

when solving coupled differential equations with boundaryat the endpoints. In our case, these are given by @dsand
conditions at infinity, one must take care to avoid solutions(13) (with v,=0), and Eq.(14). In the latter, we set

which grow exponentially ag increases. An effective way

{=20. Employing thecoLENEwW procedure carefully, we

of doing this is to replace the boundary conditions in Eqssucceeded in obtaining accurate results for the thermody-

(12) by [25,26

Jt

1+3%p

w'(0)= (0), (143

namic boundaries separating the different states in the phase
diagram, and also in distinguishing between first- and
second-order phase transitions. Our procedure was to first
consider a point in thet{r-v,) phase space known to be
well within the biaxial region. The exact numerical solution
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was then calculated at this point without the need for arfsee the inset of Fig. (8] whenv,=1. For 7,=1, the
initial guess for the magnitude of the order parameter comuniaxial-biaxial phase boundary is second-order fovalhl-
ponents. Then the temperature was increased by a smalks.

amount (the surface coupling parameters remaining fixed As noted, for small; values, the surface phase boundary
and the solution at this point found by using the previousmeets thet=1 bulk critical plane at a nonzer@hough
solution at the neighboring point as an initial guess. Thissmal) value of v. The v value at this intersection point de-
procedure was repeated until, eventually, the phase boundagyeases with increasing,, reaching zero a;~0.3. For
separating the biaxial surface phase region from that of thg,;=0.3, the transition boundary no longer intersects the
uniaxial surface phase was approached. t=1 plane. This can be seen particularly clearly in Figl) 2

When the phase transition was second order for the pagwhere we showt(- 7;) plane cuts of the phase boundary for
ticular surface couplings being considered, a smooth confixed values ofv.

tinuous change from a solution with#0 to one with
=0 was obtained. However, when it was first order, a point

was reached at which tfeLENEW algorithm no longer con- C. Effect of the isotropic surface term
verged. In this case, the transition point was determined by _ _
also usingcOLENEW to compute the uniaxiab{=0) solution As noted in Sec. Il A, the expression for the scaled sur-

in the temperature region just below that at which biaxialface free energy used in Sec. Il B was restricted because one
convergence ended. By comparing the total free energies péf the symmetry-allowed coupling parametetswas taken

unit surface area of the two solutions, the thermodynamid0 be zero. Here we remove this restriction and consider the
phase boundary was fixed as the temperature at which thegeneral case, i.e., E49) with all three parametersv( vy,

two values were equal. and v, or, equivalently,v, v,, andv,) nonzero.

After a transition point was found, the values of the sur- Inspecting Eq(9), we see that the general expression for
face couplings were changed by a small amount, and an inthe surface scaled free energy differs from Ekp) only in
tial temperature deep in the biaxial region was selected. Ththe coefficient of ,u(z), where (3%v,) is replaced by
procedure described above was then repeated until the nefw v, + 3v,) when the isotropic term is included. Thus no
transition point was reached. Finally, the locus of the transiqualitative (topologica) changes in the thermodynamic
tion points gave the uniaxial-biaxial phase boundary. phase diagram found in Sec. Il B and summarized in Fig. 2

Note that if the starting point is taken in the uniaxial re- are expected. Numerical solutions of the Euler-Lagrange
gion (i.e., where thep=0 solution is stableand the above equations for the general case confirmed this. As an example,
procedure of using the results for one temperature as thee show, in Fig. 3, the results obtained uSiOQLENEW
initial guess for the next one is followed, then, upon decreaswhen the third surface coupling parameteris included in
ing the temperature, one continues to obtain the “trivial” the calculation. Herer; was fixed(at a value of 0.5 As
uniaxial solution in the biaxial region even when it is no expected, the phase boundaries previously obtained for the
longer the energetically preferred solution. The temperatureasev,=0 [see Figs. &) and 2b)] shift in accordance with
at which this uniaxial state is replaced by the biaxial one ashe sign and magnitude @, but the topological structure of
the thermodynamic ground state can then be determined onthe surface phase diagram is unchanged.
by comparing the free energies of the two solutions.

Our results are summarized graphically in Fig$a)2
2(d). All were obtained usingcOLENEW and settingp=1.
[Physically,p is of O(1) and the phase diagram is not very
sensitive to the actual value @f in this range;p=1 was

D. Effect of fluctuations

: . i The thermodynamic phase diagrams given in Figs. 2 and
chosen as a representative valueigure 2a) is a three- 3 yere obtained by using the Landau—de Gennes formalism,
dimensional rendition of the phase boundary, in the{  4nq solving the differential equations minimizing the total
v1) thermodynamic space, between the high-temperaturgee energy. This procedure, of course, neglected thermody-
uniaxial phase and the biaxial surface state. Note(®abn  namic fluctuations and is therefore a mean-field solution of
part of the phase boundariglark grey in the figurethe  he model. Since, however, we have seen that the transition
uniaxial-biaxial transition is first-order, elsewhere it is {g 5 piaxial phase can be second order, it follows that fluc-
second-ordetlight gray); (2) the phase boundary intercepts tyations can have a significant effect on the thermodynamic
the v=0 plane whenv;=1; and(3) as expectedsee Ap-  phase boundaries. Indeed, such fluctuations are expected to
pendix A), whenv— o with v, fixed, the boundary becomes be particularly relevant as the system is essentially two di-
asymptotically parallel to the bulk critical plate=1. mensional in character near the onset of the transition to a

Cuts of the phase boundary for fixed valuesigf are  biaxially ordered phase, where the relevant in-plane correla-
given in Figs. 2b) and Zc). The boundary’s asymptotic be- tion length will be significantly greater than the layer thick-
havior asy— is seen clearly in Fig. ®) and the line of ness. Consequently, we expect, for given surface coupling
tricritical points separating the first- and second-order recoefficients, that the biaxial phase boundary actually occurs
gions is shown explicitly in Fig. @). We see that, at small at a lower temperature than that given by the mean-field field
v, the transition is first order; as increases, it becomes solution, and no longer has a mean-field character. We there-
second order via a tricritical point. The latter “slides” down fore evaluate, in this section, the effect of these fluctuations
the surface as, is increased, finally reaching the=0 plane  upon the phase diagram.



4307

SURFACE PHASE TRANSITIONS IN NEMATIC LIQUID

! ": ! . ™ .
0.5} F / tricritical line
N / ~
[ / v,=0

P / -
Fo S e v,=0.1

FIG. 2. Surface phase diagram in they-7,) thermodynamic space from exact Landau theory calculati@h$ull three-dimensional

diagram.(b) and (c) (t-v) plane cuts(d) (t-7,) plane cuts.
(16)

As we are interested in surface phase transitions occurring
within a layer whose thickness remains finite, it follows that
these are basically two dimensional in character. Then, ac-
cording to the theory of BKT19-21], the relevant fluctua-
tions which must be taken into account near the phas#here (V¢9)2=(axb')er(&yb?)2 and@ is the local angle in the
boundary are long-wavelength in-plane phase variations of-y plane between a principal axis of the order parameter

and a fixed in-plane direction. We now put the relevant part
of the fluctuation-sensitive free energy of the NLC system in

GBKTzéKbJ dx dy(V6)?,

the symmetry-breaking order parameter. The latter be-

comes non-zero in the biaxial phase.
In the BKT theory, the long-wavelength fluctuations arethe form of Eq.(16), thereby obtaining an expression for

characterized by an effective stiffndég, and the part of the K, in terms of the parameters introduced by us in Ej.
(unscaled free energy associated with these fluctuations isConsider, therefore, the biaxial paytof the order parameter
as given in Eq.(7). The in-plane fluctuations can be de-

given by[20,29
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20 - whereé, B, v, ¢4, andp=c,/c, are material-dependent con-

i stants whose values can be deduced from experimental re-
v,=0.5 sults[28]. GivenK,,, the phase transition temperatuiFg of
the BKT model is obtained from the relation

8
lim Kp=—ksTs. (21)

T—-Tg

The factor 8 is due to the invariance of the system’s order
parameter with respect te rather than 2r rotations, as is

the case for a conventional magn2g]. Also, we have ne-
glected the renormalization df,, due to the presence of
bound disclination pairs in the biaxial stdt0,29. Given

the other approximations made and the estimates to be used
for the various parameters, this is reasonable.

The BKT phase transition boundary was calculated as fol-
lows: For the parameters iK,, we used values taken from
the literature [3,28,30 and given in Ref.[22], i.e.,
B=2.4x10" ergs/cn?, y=2.2x10" ergs/cn?, and
5 c;=13.5x10 7 erg/cm. These gavé=7.9x10" ' cm. We

assumed thafy was approximately equal tdy,=350 K
t [i.e., (Ts—Tn)/Tyi<€1] and, as elsewhere, that=1. For
fixed coupling parameters and temperature, the order param-

FIG. 3. Surface phase diagram obtained from exact Landa@ter[u({),7({)] in the biaxial phase was found and the
theory calculations when the additional isotropic term in the surfaceeffective elastic constark,, at this point was calculated.
free energy, proportional fo,, is considered. Then, by scanning in the direction for fixed values of the

coupling parameters, the scaled temperature at which Eq.
scribed by local variations of the angiéx,y) defined above (21) is satisfied was found.
and the in-plane fluctuating part of the order parameter, The results of our calculations are summarized in Fig. 4.
Miuct, Can be written as In Figs. 4a) and 4b), two-dimensional {-») plane cuts of
the phase diagram are shown, fer=0.5 and 1.5, respec-
tively, andv,=0. For comparison purposes, both BKT and

cos®? —sinf| 1 | n({) 0 cos® sind =, DU :
Miuc=1| _. — , Landau theory results for the phase transition line are given.

sind  cos |\l6| O —n({)|—sing cowp Figures 4c) and 4d) are also {-v) plane cuts, with

1 cos®  sin2g v1=0.5 and 1, respectively. In both, we show BKT phase

=— () _ (17) boundaries fo'n?zlz.o gnd 0.5 and, fpr compar.ison, the Lan-
J6 dau theory transition line for,= 0. Finally, in Figs. 4e) and
A(f), (t-v,) plane cuts showing both BKT and Landau
The free energy associated with phase fluctuations is founBoundaries forv=0.5 and 1.5, respectively, ang=0 are
by substituting Eq(17) into the gradienti.e., elasti¢ terms ~ given. From the figures, the shift to lower temperatures of

in the (unscaledlbulk free energy Eq(2). Using Eqs(3) and  the transition boundary between the uniaxially and biaxially
(4), the latter may be written as ordered surface phases from the Landegean-field posi-

tion for all values of the surface interaction coupling param-
eters is clearly evident.

sin20 —cos29

52
Zf d3X(Mi2j,k+pMij,jMik,k)- (18

B4
Ghiuet= [W

I1l. DISCUSSION
Substituting Eq(17) into Eq.(18) and using Eq(3), for the In this study, we have considered the most general
free energy associated with the long-wavelength in-plangymmetry-allowed interaction possible between a NLC sys-
fluctuations we obtain tem and a planar bounding surface, subject to two conditions.

These arga) the coupling constants are either linearly or
1[2 B2 L o ) ) quadratically proportional to the magnitudes of components
fluct= > 5701(1+ip)ff0 dZ 7°(9) J dx dy(V ). of the tensor order parameter at the interface, éndthe
(19) normal to the surface is a principal axis of the order param-
eter. We thus disregard, in particular, nonlocal couplings,
e.g., those dependent upon the values of derivatives of the
order parameter at the interfai®l], and the additional cou-
pling term appearing in tilt configurations, where a principal

Comparing Eqs(16) and(19), we find that the effective
stiffnessKy, for our model is given by

2 p? . axis of the order parameter makes an acute angle with the
Ki=—"c.(1+12 f de 74(0), 20 surface normal. As regards the former, we note that such
P79 y? 11+zp)¢ 0 ¢m(d) 20 terms are expected to be negligible in our geomgg&}. The
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FIG. 4. Modified surface phase diagram obtained from the Berezinskii-Kosterlitz-Tha@&3s theory of two-dimensional phase
transition. Part$a) and(b) are ¢-») plane cuts forr,;=0.5 and 1.5, respectively, ang=0. Parts(c) and(d) are also {-v) plane cuts; here
the effect of the isotropic term in the surface free energy, proportionaj,ton the BKT boundary is considered. We present the results for
7,=0.5 andr,;=0.5 and 1, respectively. Pai® and(f) are ¢-7,) plane cuts forr=0.5 and 1.5, respectively, ang=0. In all the figures,
both BKT and Landau theory results are shown.

latter is also not of central importance as our main objectivdace contribution to the free energy is expressed phenomeno-
is to examine the conditions under which BKT-type phasdogically in terms of three parametef$4,15. All previous
transitions can occur in a NLC surface layer. work studying planar boundary conditiof44,18,22—-24

For the interaction potentials that we considered, the surdealt, at different levels of approximation, with only a single
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parameter, most often that linearly proportional to an orderegion is bounded by a line of tricritical points. For higher
parameter componeft4,18,22,23 Only in one study24]  values of] v,7;], the transition from the high temperature to
was a quadratic coupling parameter considered. the biaxial phase is continuous. Ultimatelgee Appendix
The mean-field results of Kothekar, Allender, and Horn-A), the continuous transition boundary to the biaxial phase
reich [23] for the surface phase diagram were obtained bypecomes asymptotically parallel to the 1 plane asy— o
minimizing the free energy exactly usingoLenew. The  for all v;. Note particularly that the second-order transition
BKT phase boundary was then calculated by the Sambetween the high-temperature uniaxial phase and the biaxi-
method discussed in Sec. 1ID. Kothekar, Allender, andally ordered surface state occurs for a wide rangg1ob,]
Hornreich[23] were able to resolve the open questions re-values; this, of course, is very desirable as it increases the
maining from earlier limited and approximate studiespossibility of observing thls phase transition experimentally.
[14,18,22 of the same free energy functional. The efiect of includingy, in the theoretical model is to
Hornreich, Kats, and Lebede\24] used only a single shift the v,=0 thermodynamic phase boundary shown in
quadratic surface interaction potentigbroportional to Fig. 2@, but not to change it in any significant way. As
v1=7,) to model the surface free energy. In addition, onlyillustrated in Fig. 3, the phasgboundary shifts in accordance
three limiting configurations for the allowed phases werewith the sign and magnitude 0%, but its form as a function
considered: an isotropic or disordered state, a strictlf v andv, is essentially preserved. Thus the influence of
uniaxial one, and a completely biaxial structure. It wasthis particular coupling parameter on the phase diagram is
shown, under these conditions, that a continuous isotropidess than that of the other two considered in our analysis.
to-biaxial phase transition should occur whepis greater Since all Landau theory calculations are necessarily mean
than some minimum value. Even for the model consideredfield in character, our calculations were extended to include
their surface phase diagram was approximate, as the meafiictuation effects. This was done by recognizing that, in the
field Euler-Lagrange variational equations were not solvedritical region, the system is essentially two dimensional in
exactly, and the BKT phase boundary was found by calcucharacter and that, consequently, the BKT theory is appli-
lating the fluctuation-induced shift from the mean-field tran-cable. We therefore modified the Landau model calculation
sition line. by taking the relevant long-wavelength variations of the or-
The principal results obtained by us here are presented ifler parameter into account, as discussed in Sec. 1l D. The
Figs. 2—4. In all calculations, the elastic constant ratio wagesults are summarized in Fig. 4, where different two-
p=1. We found that the phase diagram was not sensitive tgimensional cross sections of the thermodynamic phase dia-
this parameter as long as its value was physically reasonab@am are given. At first glance, there are no qualitative dif-
(i.e., in the range &p=2). Of course, forr;=7,=0, our  ferences between the BKT and Landau theory results for the
results reduce to those of Ref23]. However, for Pphase boundary; the most obvious effect of the fluctuations is
v=7,=0, our results differ from those reported earlier by to lower the temperature at which the transition occurs for a
Hornreich, Kats, and Lebedei24]. This is due(as they given surface coupling parameter values. However, there is a
themselves notedo the constrained nature of the order pa-second, more significant, difference as the BKT model is
rameters considered by them. Thus, where they found reParticular to two-dimensional systems. In this case, the biax-
gions in which ordered surface states with different symmelal phase doesot exhibit true long-range order with a non-
tries (uniaxial and fully biaxial were respectively preferred, zero order parametefas it does in the mean-field Landau
we find only asingle ordered state, characterized by biaxial theory but is instead characterized by algebraic decay of
order. Of course, this order parameter approaches that of @rrelation functions. This is a property which one would
fully biaxial state in the region in which Hornreich, Kats, and Wish to confirm experimentally.
Lebedev found the latter state and, conversely, approaches In order to compare our theoretical results with possible
uniaxiality where those authors reported a stable uniaxiagXperiments, it is necessary to recast the scaled parameters
state. Further, we find that the ordered surface state exi@efining the theoretical phase diagram into physical quanti-
only whenv, exceeds a minimum value, and that there is arfies. Typical values for the bulk parameters of NLC's are
interval of 7, values(beginning at the minimum value noted given in Sec. I D; from these and experimental studies it
and terminating at a tricritical valiidor which the transition ~ follows that the reduced unit of temperature 1 is of the
between the isotropic or fully disordered state and the biaxorder of 0.5 to 1 K[13]. The scaled surface interaction cou-
ially ordered surface state is of first-order. The authors ofling parameters), v;, and v, can be related to physical
Ref. [24], whose analytic calculations considered only thevalues by defining the latter via the expression
stability limit of their uniaxial state ansatz, were not sensitive
to either of these possibilities.
In Figs. 2b)—2(d), we present two-dimensional cuts of O €]=(T€es3— 501€,p5€,51 3026 €)) 8(2— 20). (22)
the three-dimensional thermodynamic space-{;) shown
in Fig. 2(a). As expected, we find that a phase transition fromComparing Eqs(5) and (22) and using Eq(3), we obtain

the v,#0 high-temperature uniaxial phasewhich is  rajations between the scaled and physical surface free energy
bounded by the fully isotropic phase when=0) to the parameters. These are

biaxially ordered surface phase occurs at a temperature
t>1 for almost all values of the coupling parameters

[v,7,]. Only whereboth parameters are sufficiently small 3 2
does no transition occur. For somewhat highgiv, ] values, P& B¢

O=——=—V, O1,=——V (23
there is a region in which the transition is first order; this 6\/63/2 L2y 12



55 SURFACE PHASE TRANSITIONS IN NEMATIC LIQUID ... 4311

Using theg, y, and¢ values cited in Sec. Il D, we find that terizing a transition to a biaxial state were included in the
o=vX1.5 ergs/cm, and 01,=v1X3.4 ergs/cm. These analysis. The Euler-Lagrange equations obtained by mini-
relations therefore define the range of surface couplings remizing the Landau—de Gennes expression for the free energy
quired in order to observe the theoretically predicted BKTwere solved exactly by numerical means. For the region in
surface phase transition. Reported experimental measurghich the transition was found to be of second order, we
ments[22,24,33,34 indicate that surfaces characterized byconsidered the effect of fluctuations on this quasi-two-
interaction potentials appropriate to observing the predictedimensional system by introducing the Berezinskii-
phase transition can be prepared. Kosterlitz-Thouless mechanism and evaluating its effect on
One possible experimental technique for observing théhe phase boundary. The possibilities for observing this
BKT surface transition is evanescent-wave ellipsometry, aphase transition experimentally were considered and some
developed by Chest al.[10]. Here one measures the phasepotentially useful techniques noted.
differenceA betweenp- ands-polarized light incident upon
a liquid crystal-substrate interface and totally reflected at the ACKNOWLEDGMENTS
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where the final expression is valid forslightly less than

tu, the reduced uniaxial-biaxial transition temperature cal- APPENDIX A: ASYMPTOTIC BEHAVIOR
culated from the theory. Thus the critical behaviorAofap- OF THE BIAXIAL PHASE TRANSITION
pears only through itst(,—t) dependence. This, of course, BOUNDARY AS v—x»

is expected as this technique probes a static property of the \iotivated by the numerical resulti23] showing, for
system and is consequently sensitive only to static critica})so and7,=7,=0, that a biaxial surface state does not
properties. Since the deviation from this simple square rookyis; fort> 1 Whenv1exceeds a maximum valus,.(p), we

o . . a ]
dependence foA when the transition is of the BKT type iS rganalyzed the Euler-Lagrange equatiét® and associated
subtle, it would be difficult to verify such a character for the boundary conditions, Eqg12) and (13), in an attempt to

phase transition by this approach. _ determinev,,,(p) analytically. To do this, we set=1 and

To see this, consider the effect of fluctuations on the be;l:;zzo and linearize Eqg(11) in # and its derivatives
havior of our system near the BKT phase transition temperagince the uniaxial-biaxial surface phase transition is ex-
ture Tg. It is well known that, in this region, all thermody- ﬁeCted to be second-ordeand obtain

namic quantities scale as powers of the correlation lengt

¢, (defined as the length over which order persists for (1+2pR3)u"=pu—6u?+8us, (Ala)
T>T,), which has an essential singularity Bt of the form
[20,21] 7'=n(1+12u+8u?). (Alb)

C The boundary conditions af=<« are as given in Egs.
§r=¢ex (T-To™ T>Ts. (29 (12); those atz=0 are given by Eqs(13) with 7;=7,=0.
Setting (1+2p/3)=s? (note thatp>—3 always[13]), the
Here C is a positive constant. FoF<Tg, £,=%. As a  solution of Eqs(Ala), (123, and(139 is
consequence of the essentiether than more usual power

law) character of the singularity, modifications in the static m()=3[1- ¢ texp(¢ls)] (A2)
critical behavior characteristic of BKT transitions are diffi- _
cult to detect experimentally. with ¢~ 1=(1-1/2u0) and pe=p({=0)=3[1-(1+

A better approach would be to study the dynamics of the32v/\65)7. In the physical domain &¢=c, u(¢)
critical behavior by light scattering techniques, as discussed 0 a_nc_i Os¢=<1. _
by Hornreich, Kats, and Lebed§24]. We review the theory Defining 7=[1— ¢ exp(={/s)] and using Eq(A2), Eq.
applicable to this technique in Appendix B. (Alb) becomes

In summary, we have calculated the thermodynamic
phase diagrarr): of a semi-infinite nematic liquid cryst)(/':ll sys- (1= 1), (1= D, 52(2_107+972)"=%3
tem above its bulk ordering temperature for the case of pla- (A33)
nar boundary conditions. It was assumed that the latter favafith the associated boundary conditions
a uniaxially ordered surface state characterized by a negative
orientational order parameter, at sufficiently high tempera- p(r=1—¢)=n(r=1)=0. (A3b)
tures. All symmetry-allowed terms either linearly or qua-
dratically proportional to the tensor order parameter characthe physical domain is now-t¢<7<1, n,=d»/dr, etc.
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Equation(A3a) is a second-order linear differential equa- Here 6(q,w) is the Fourier transform of(r,t) with two-

tion for » with regular singular points at=0 and 1. The
boundary condition #7(r=1)=0 ensures that
n~(1—7)%As(7), whereAy(7) goes to gnonzerg constant
value ast—1. However, in the neighborhood ef=0, we
have

n~A(7) T+ A7) 72, (A4)
wherer; ;= (1= J1+8s?)/2, andA; i(7) are functions of
7 and the parameter (1s). Sincer ;>0 andr,<0, the be-
havior of » at small 7 is determined by whetheh,(7) is
greater than, equal to, or less than zere-as0 ™. In general,

the values of\, , are evaluated by continuing these functions

into the region near the=1 singular point. The value of
vmax 1S then obtained by determining the valueduch that
n(7=1-¢)=0.

A particularly interesting special case is=0 or s=1.
Here A,(7) is identically zero and thexact solutiorof Eq.
(A3a), valid for O<r<1, is 75=7%(1—7). Since
7,(r=0)=0, the boundary conditiony (7=1—¢)=0
yields ¢=1. This in turn giveSugo— — and v— v —°°.
We therefore conclude that,,,,=« at p=0.

Further analysis shows thak,(7) is positive for —3
<p<0, and negative fop>0. Consequentlyy . is finite
for —3<p<0. Its approximate value in this range is

VmadP)=165(1— Q)/8Q%, with Q=0.223(1—s)*3,

APPENDIX B: LIGHT SCATTERING
AT SURFACE PHASE TRANSITIONS

As in Sec. Il D, we parametrize the long-wavelength fluc-

dimensional wave vectar and frequencyo andI" is a phe-
nomenological kinetic coefficiethonsingular af) charac-
terizing the relaxation off. Its inverse ! has the
dimension(and physical meaningof the torsional viscosity
v1 in NLC's. Both coefficients [ andKy,) in Eqg. (B1) are

renormalized by disclinations.

The light-scattering cross section is obtained by evaluat-
ing the correlation function(e,4(r,t)€,5(0,0)). Consider,
for example, an experimental configuration wherein the light
is in thex-z plane and is initially polarized along Then the
intensity I (g, w) of scattered light due to orientational fluc-
tuations is dominated by the correlation function

1(q,w)=M{(cos20(q,w)cos29(—q,—w)), (B2)
where M = e20*/87%c* (e, is the dielectric anisotropy of
the NLC, andc the velocity of lighj is the standard prefactor
relating light-scattering intensity to the fluctuation correla-
tion function.

As shown in[24], 1(q,w) can be written in the form

I(q,w)sz d?r dt exd —4g(r,t)+iwt—ig-r],
(B3a
with
_ keT f d’q
g(r)_47TZKb q2+§12

X[1—exp(—TKy(g?+ £, 9)t+iq-r)]. (B3b)

tuations of the symmetry-breaking two-dimensional order

parametern by the angular variabl@(x,y,t)= 6(r,t). The
time dependence is now written explicitly amdis an x-y
plane position vector. Fof >Tg, the BKT mechanism re-
sults in a finite density of free disclinations which inhibit

ordering in the surface layer. It is therefore necessary to take
these disclinations into account. This has been done for

smecticA—C transitions in freely suspended thin fili35]

Using Egs.(B3), the wave vector dependence of the inte-
grated intensityt (q) = fdw (g, ) is

and, with slight modifications, we can use the expression

given there for the director angle correlation function. We

have
G(q,®)=(6(q,) 6( ))= 2l ko]
I T T (P )
(B1)
|
M/wqg? X
M/qZ(FKb§12)x/2w17(x/2)
M/wés g

q % forqé,>1
@] g2 forge, <1, (B4a
with
x=2kgT/ 7K . (B4b)

It follows from Eq. (21) that, atT=T,, x=1.

Similarly, the asymptotic dependenceldf], ) onqg and
w can be derived in various limif24]. The resulting expres-
sion are

forgé,>1 andw>TK,

for q&,>1 andl'K &, *<w<I'Kp0?
for q¢,>1 ando<I'Kp&, 2

forqé, <1 and allw.

(B5)

Note that, in all these expressions fbfqg,w), the critical behavior near the BKT phase transition enters only via the

temperature dependence of the correlation leggth
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