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Surface phase transitions in nematic liquid crystals with planar anchoring
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We calculate the thermodynamic phase diagram of a semi-infinite nematic liquid crystal system above its
bulk ordering temperature for the case of planar boundary conditions. The latter are assumed to favor a
uniaxially ordered surface state, characterized by a negative orientational order parameter, at sufficiently high
temperatures. All symmetry-allowed terms either linearly or quadratically proportional to the tensor order
parameter characterizing the transition to a biaxially ordered surface state are included in the analysis. The
Euler-Lagrange equations obtained by minimizing the Landau–de Gennes free energy expression are solved
exactly by numerical methods. We find that both first- and second-order transitions are possible; they occur in
different sections of the thermodynamic phase boundary separated by a line of tricritical points. In the second-
order region, we evaluate the effect of fluctuations on this quasi-two-dimensional system by introducing the
Berezinskii-Kosterlitz-Thouless mechanism, and calculating its effect on the phase boundary and nature of the
transition. Possible ways of observing this phase transition experimentally are considered and some potentially
useful techniques noted.@S1063-651X~97!09103-4#

PACS number~s!: 64.70.Md, 61.30.Cz
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I. INTRODUCTION

The effect of a bounding surface upon nematic liqu
crystal ~NLC! ordering has been of interest for both fund
mental and technological reasons. In the former area, NL
have been utilized as relatively simple model systems
which different types of interactions between a bound
surface and anisotropic molecules can be studied. Tec
logically, fixing the orientation of liquid crystal molecules
cell surfaces is a key element in the design of display
vices, and must therefore be properly understood and c
trolled.

As a consequence of the above interests, a great de
experimental and theoretical work has been carried ou
order to understand the influence of nematic-surface inte
tions on local ordering at an interface. It has become ap
ent that the symmetry breaking which occurs at a surf
leads to a variety of interesting phenomena, includ
surface-induced ordering and phase transitions betw
surface-oriented states.

Theoretically, the nematic-solid boundary has been inv
tigated primarily for the simplest types of surface intera
tions; namely, those preferentially orienting the molecu
either normal or parallel to the surface. Three distinct surf
orientations are, in principle, possible.

~a! Homeotropicalignment, wherein the preferred mo
lecular orientation is normal to the surface. In this case,
surface interaction is necessarily invariant under all rotati
about an axis normal to the surface and the latter is a p
cipal axis of the alignment.

~b! Homogeneousalignment, wherein the preferred orien
tation is along an axis lying in the surface. Here both
normal and the preferred in-plane axis are principal axes

~c! Planar alignment, wherein the molecules lie prefere
tially in the surface plane, but lack a preferred orientation
551063-651X/97/55~4!/4302~12!/$10.00
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this case, the invariance of the surface interaction is the s
as in ~a!, but the axis of the molecules is normal to th
principal axis of the alignment. This configuration is d
scribed by a negative orientational order parameter.

The homogeneous case is common experimentally,
little has been done theoretically regarding the formation
surface layers. The homeotropic case has been studied
retically by several researchers@1–3# who found a
temperature-surface coupling phase diagram which
sembled that of a positive anisotropy bulk NLC phase d
gram in the temperature-applied field plane@4#. Later, Schick
@5# pointed out that this phase diagram can be described
ing the language of wetting@6,7#. Experimentally, Miyano
@8# was the first to observe surface-induced order in NLC’s
temperatures above the nematic-isotropic~NI! transition
temperature,TNI . In another experimental study, Chenet al.
@9# studied the wetting behavior of the NLC homologo
series of alkyl cyanobiphenyls,nCB, n55, 6, 7, 8, and 9~n
served as a practical way of tuning the strength of the NL
surface interaction!, using an evanescent wave ellipsome
technique. Their results showed partial orientational wett
of the surface for the case of 5CB@10# and complete wetting
for 6CB to 9CB. The complete wetting behavior becam
more apparent asn was increased.

Theoretically, a traceless second-rank tensor is an ap
priate macroscopic description of the order parameter for
case of a NLC. Among possible choices, an experiment
convenient one is obtained by taking the position-depend
dielectric tensore i j

D(x) and subtracting one-third of its trac
from each of its main diagonal elements. The desired or
parametere i j (x) is thus given by@1#

e i j5e i j
D2

1

3
Tr~eD!d i j . ~1!

This tensor is symmetric, and can be diagonalized in its p
4302 © 1997 The American Physical Society
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55 4303SURFACE PHASE TRANSITIONS IN NEMATIC LIQUID . . .
cipal axis basis at any pointx. If any two of the resulting
eigenvalues are equal, the system is said to beuniaxial. Oth-
erwise, it is biaxial. Clearly, if the system is everywher
uniaxial above a specific temperature, then a symme
breaking phase transition occurs when biaxiality appears
low this temperature.

In terms ofe i j , the standard Landau–de Gennes expr
sion for the bulk free energy density, which is assumed to
valid in the vicinity of the NI phase transition is@11,12#

gb@e#5 1
2 @ae i j

21c1e i j ,k
2 1c2e i j ,iek j ,k#2be i j e jkeki1g~e i j

2 !2.
~2!

Here e i j ,k[]e i j /]xk and all repeated indices are summ
over. Only the coefficienta is regarded as~linearly! tempera-
ture dependent; the other coefficients (b,g, c1, andc2) are
taken to be constant in the temperature region of interes

The above expression forgb can be simplified by intro-
ducing the following scaled parameters@13#:

m i j5~b/A6g!e i j ,
1
4 t5~3g/b2!a, f5~36g3/b4!g,

1
4 j25~3g/b2!c1 , r5c2 /c1 . ~3!

Here, in particular,t is a reduced temperature variable wi
t51 corresponding toT5TNI , and j sets the length scal
over which the order parameter magnitude changes in thz
direction. It will characterize the thickness of the order
surface layer. Because the bend elastic constant of nem
is typically twice the value of the twist constant, the phy
cally reasonable range ofr is of order one. Realistic choice
of the other parameters are discussed in Sec. II D.

In terms of these parameters, the scaled bulk free en
density becomes

f b@m#5 1
4 @ tm i j

21j2~m i j ,k
2 1rm i j ,imk j ,k!#

2A6m i jm jkmki1~m i j
2 !2. ~4!

To obtain the total scaled free energy density, we m
supplementf b by a similarly scaledsurface contribution
f s . We shall be concerned, in this work, with a semi-infin
system bounded, atz50, by a flat surface upon whichpla-
nar boundary conditionsapply. To second order in the re
duced order parameterm i j , the scaled surface free energ
density is given by@14,15#

f s@m#5@nm331
1
2 ~2n1mabmab1n2m i jm j i1n3m3im i3!#

3jd~z2z0!, ~5!

wherea,b51,2, andz0 is an arbitrarily small offset which
insures that the surface interaction is in the half-sp
z.0. Only one term linear in the order parameter is allow
for planar boundary conditions; it is given by then term in
f s . The other three terms are the symmetry-allowed q
dratic contributions. If the analysis is restricted to phases
which the surface normal is one of the principal axes
m i j , the n3 term in f s@m# is not independent of those pro
portional to n1 and n2, and may therefore be suppresse
This will be done henceforth. In addition, it will be assum
that all order parameter configurations of interest are unifo
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in the x-y plane. The relations between the rescaled surf
parameters (n,n1 ,n2) and the real physical quantities a
given in Sec. III.

The total scaled free energy per unit area in thex-y plane
is now

F@m#5Fb@m#1Fs@m#5E
0

`

dz fb1E
0

`

dz fs . ~6!

Both integrals converge for allt.1. The physical system is
shown schematically in Fig. 1.

Since the scaled order parameterm i j is a symmetric trace-
less tensor, it can, at any pointx, be diagonalized in a loca
principal axis system in terms of two scalar functionsm(z)
andh(z). That is, we can write

m~x!5m~z!

5
1

A6 F 2m~z!1h~z! 0 0

0 2m~z!2h~z! 0

0 0 2m~z!
G .

~7!

The functionsm(z) andh(z) are determined by minimizing
F for any particular system. Note that whenh(z)50 or
63m(z), the phase is uniaxial; otherwise, it is biaxial.

In this work we obtain the surface phase diagram for
case of planar anchoring, characterized by a negative sur
orientational order state which arises due to the random
nar molecular alignment. Experimentally, the negative s
face orientational order state was observed both using
evanescent wave elipsometry technique@16# and using deu-
terium NMR @17#.

The first workers to theoretically discuss the possibility
having surface-induced biaxial order in NLC’s with plan
boundary conditions were Sluckin and Poniewierski~SP!
@14,18#. They used a Landau–de Gennes formalism in wh
the coefficientc1 in the bulk free energy@see Eq.~2!# was set
equal to zero@or equivalently,r→` in Eq. ~4!#. Further,
only the linear surface coupling term@proportional to
n—see Eq.~5!# was included inf s@m#. A phase transition to
a biaxially ordered surface state aboveTNI was obtained by
requiring thatn be positive. An interesting feature of th
phase diagram was the existence of a line of continu

FIG. 1. Schematic views of the semi-infinite space occupied
the liquid nematic liquid crystal system. The left side illustrates
molecular distribution on the bounding surface for the case of
plane isotropic ordering; the right side shows the equivalent dis
bution when the in-plane symmetry is broken.
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phase transitions from a high-temperature uniaxial surf
state to a biaxial one. SP noted that the order in the sur
biaxial layer has the same symmetry as in the tw
dimensionalXY model. This phase transition, which d
scribes symmetry breaking within the bounding plane,
therefore in principle described by the Berezinsk
Kosterlitz-Thouless~BKT! @19–21# mechanism. It was ar
gued by SP that their neglect of thec1 elasticity term in the
Landau–de Gennes bulk free energy did not change the
pology of the phase diagram. On the other hand, howe
the addition of quadratic surface coupling terms could lead
changes in its topology@18#.

The case of finiter was stuided by L’vov, Hornreich, an
Allender @22#, and, later, Kothekar, Allender, and Hornreic
@23#. They obtained, for physically interesting values ofr
(.1), the correct Landau theory surface phase diagram
the (t-n) phase plane, and also calculated the BKT transit
boundary due to fluctuation effects. Kothekar, Allender, a
Hornreich showed numerically that a transition to a biax
phase does not occur for sufficiently largen whenr&0. An
analytic proof that this crossover point is exactly atr50 is
given by us in Appendix A.

A first attempt to go beyond the linear term approxim
tion for the surface coupling was made by Hornreich, Ka
and Lebedev@24# who, however, consideredonly the qua-
dratic surface term proportional ton1.0 ~to favor in-plane
molecular orientation! in the scaled surface free energy@i.e.,
they setn5n250 in Eq. ~5!#. In our work, we broadened
these earlier studies by considering a more realistic mo
Specifically, we included in the scaled surface free ene
terms both linear and quadratic inm i j @see Eq.~5!#. Experi-
mentally, both types of terms are always present, and t
relative magnitudes cannot be fixed independently. It
therefore important to determine whether the uniaxial-biax
surface phase transition reported in the series of papers
cussed above occurs under conditions which, experiment
are more realistic. We used Eqs.~4! and ~5! for the scaled
bulk and surface free energy densities, respectively.
analysis was restricted to configurations in which the surf
normal was a principal axis of the tensor order parame
Therefore, without loss of generality, we could setn350.
Note that, to our knowledge, this is the first study in whi
both linear and quadratic surface terms are included in
analysis, and the additional symmetry-allowedn2 contribu-
tion to the scaled surface free energy is explicitly consider

Our study was carried out in two steps. In the first,
ignored then2 term in the scaled surface free energy dens
considering only the contributions proportional ton andn1.
The complete mean-field phase diagram in the (t-n-n1) ther-
modynamic space was then obtained fort.1 by exactly
solving the coupled nonlinear Euler-Lagrange differen
equations for the order parameter with appropriate bound
conditions. This was done numerically by employing a so
ware code~COLNEW! @25,26# specifically developed to solv
such problems~multipoint boundary value problems for
coupled system of ordinary differential equations!. The long
wavelength in-plane fluctuations characteristic of BKT pha
transitions were then considered, and their effects upon
mean-field phase diagram calculated.

In the second step, the fully isotropic surface contribut
proportional ton2 was also considered. It was shown th
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this term doesnot change the topology of the surface pha
diagram, but simply shifts the transition boundary by
amount essentially proportional to the magnitude and sign
n2.

The outline of our paper is as follows: In Sec. II A, w
present the general Landau theory framework for our ca
lation, including the details of the surface interaction pote
tial being considered. Some technical points regarding
numerical procedure employed to solve the coupled non
ear differential equations describing the equilibrium sta
are noted. Next, in Sec. II B, a restricted surface interact
potential is considered, and the associated thermodyna
phase diagram calculated. In Sec. II C, we return to the g
eral expression for the surface potential, and show that
results of Sec. II B are essentially unchanged. Then, in S
II D, the role played by thermodynamic fluctuations near t
phase transition is analyzed and shown to result in a t
dimensional transition of the BKT type. A phase bounda
appropriate to this type of transition is calculated and co
pared with that obtained from the mean-field Landau theo
Finally, in Sec. III, we discuss our results, compare th
with those reported in earlier work, and consider possi
ways of verifying them experimentally. Technical details a
given in two appendices.

II. THEORY

A. Landau theory in the general case

As discussed in Sec. I, we are interested in a NLC sys
which fills the half-spacez.0 and interacts via a surfac
potential with thez50 boundary~see Fig. 1!. Assuming that
the surface interactions are short range in character, the
free energy of the system is well modeled by integrating o
a sum of bulk and surface free energy densitiesf b and f s ,
which are given in a suitably scaled Landau–de Gennes
malism in Eqs.~4! and~5!. When no bulk ordering is presen
~i.e., t.1) and the relevant order parameter configuratio
are uniform in thex-y plane, the total scaled free energy
given by Eq.~6!.

Again noting that the term inf s proportional ton3 @see
Eq. ~5!# does not contribute whenz is a principal axis of the
order parameterm i j (z), we substitute Eq.~7! into Eqs.~4!–
~6! and obtain

Fb /j5E
0

`

dz@ 1
4 tm

22m31m41 1
4 ~11 2

3r!~m8!21 mh2

1 2
3m2h21 1

12 th
21 1

9 h41 1
12 ~h8!2#, ~8!

Fs /j5F 2

A6
nm01~2 1

6n11
1
2n2!m0

21 1
6 ~2n11n2!h0

2G .
~9!

Herem05m(z50), h05h(z50), z5z/j is a reduced co-
ordinate in thez direction, and a prime denotes derivatio
with respect toz.

It will be convenient to use new surface coupling co
stants which are linear combinations ofn1 andn2. We shall
call themñ1 and ñ2 and define them in terms of the origina
parameters by
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ñ15n12n2 , ~10a!

ñ25
2
3n2 . ~10b!

In terms of these new parameters, theh0
2 term in Eq.~9! is

dependent only uponñ1 andnot upon ñ2, while them0
2 term

in this equation has the same functional form, withn1 and
n2 now replaced byñ1 and ñ2, respectively. Further, from
Eq. ~10!, whenn250, n15 ñ1.

The equilibrium order parameter componentsm(z) and
h(z) are determined by minimizingF5Fb1Fs with respect
to m andh. This yields two coupled, nonlinear, differentia
Euler-Lagrange equations

~11 2
3r!m95tm26m218m312h21 8

3mh2, ~11a!

h95th1 8
3h3112mh18m2h. ~11b!

While h50 is a trivial solution of these equations~with
appropriate boundary conditions—see below!, it is not al-
ways the thermodynamically stable state, i.e., the config
tion minimizing the free energy.

Since we are interested in the regimet.1 where no bulk
ordering occurs, the order parameter describing the sys
asymptotically approaches that of the disordered or isotro
state far from thez50 boundary. The boundary condition
at z5` are therefore

m~z5`!5m8~z5`!50, ~12a!

h~z5`!5h8~z5`!50. ~12b!

The z50 boundary conditions are obtained by integrati
the variational equations in an infinitesimal region about t
point. This procedure yields@22,24,27#

m8~z50!5
2

~11 2
3 r!

F 2

A6
n1~2 1

3 ñ11 ñ2!m0G ,
~13a!

h8~z50!522ñ1h0 . ~13b!

When both linear and quadratic surface terms are pres
Eqs. ~11!, together with the accompanying boundary con
tions, Eqs.~12! and ~13!, cannot be solved analytically. I
order to solve this coupled pair of nonlinear different
equations, we therefore employedCOLENEW @25,26#. How-
ever, in order to efficiently utilize theCOLENEW procedure
when solving coupled differential equations with bounda
conditions at infinity, one must take care to avoid solutio
which grow exponentially asz increases. An effective way
of doing this is to replace the boundary conditions in E
~12! by @25,26#

m8~ z̄ !5
At

A11 2
3

r
m~z̄ !, ~14a!
a-

m
ic

s

nt,
-

l

y
s

.

h8~ z̄ !5Ath~z̄ !, ~14b!

wherez̄ is a large but otherwise arbitrary value ofz.
Exact numerical solutions of the Euler-Lagrange eq

tions, together with their accompanying boundary con
tions, were found in two stages. In the first, the isotrop
termn2 was arbitrarily set equal to zero. This corresponds
a direct combination of the two cases considered previou
i.e., those in which the bounding potential was described
either an @14,18,22,23# or an1 @24# surface term. The result
from this part of our study can thus be directly compar
with those reported previously. Subsequently, the effect
including a nonzeron2 term on the phase diagram was co
sidered.

B. Casen250

We now consider the special case in which only two (n,
n15 ñ1) of the three allowed surface coupling parameters
nonzero. The third (n2) will be taken equal to zero in this
part of the analysis. This does not affect the expression
the bulk scaled free energy, which remains as in Eq.~8!.
From Eqs.~9! and ~10!, however, the scaled surface fre
energy reduces to

Fs /Aj5
2

A6
nm02

1
6 ñ1m0

22 1
6 ñ1h0

2 . ~15!

The surface couplingsn and ñ1 are taken to be positive
As noted, this restricted model includes, as special ca
those studied previously by Hornreich, Kats, and Lebed
@24#, where only the quadratic surface couplingñ1 was con-
sidered~i.e., n5 ñ250, so thatñ15n1) and that extensively
analyzed by Sluckin and Poniewierski@14,18#, L’vov, Horn-
reich, and Allender@22#, and Kothekar, Allender, and Horn
reich @23#, where only the linear surface coupling was i
cluded ~i.e., n15n250). As we shall see, adding th
quadraticñ1 term to the linear surface coupling one inFs
tends to favor biaxial ordering in the thermodynamic pha
space, thereby expanding the region in this space in whic
biaxially ordered surface state is energetically preferred. T
is due to the final term in Eq.~9!, which couplesñ1 to the
biaxial order at the surface. It provides the mechani
whereby biaxial ordering, under appropriate conditions, lo
ers the system’s free energy.

As noted, the Euler-Lagrange equations~11! cannot be
solved analytically. We therefore solved this pair of coupl
non-linear differential equations form(z) andh(z) numeri-
cally using COLENEW @25,26#. This code is invoked via a
simple calling routine, which includes as subroutines the d
ferential equations to be solved and the boundary conditi
at the endpoints. In our case, these are given by Eqs.~11! and
~13! ~with ñ250), and Eq. ~14!. In the latter, we set
z̄520. Employing theCOLENEW procedure carefully, we
succeeded in obtaining accurate results for the thermo
namic boundaries separating the different states in the p
diagram, and also in distinguishing between first- a
second-order phase transitions. Our procedure was to
consider a point in the (t-n-ñ1) phase space known to b
well within the biaxial region. The exact numerical solutio
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was then calculated at this point without the need for
initial guess for the magnitude of the order parameter co
ponents. Then the temperature was increased by a s
amount ~the surface coupling parameters remaining fixe!
and the solution at this point found by using the previo
solution at the neighboring point as an initial guess. T
procedure was repeated until, eventually, the phase boun
separating the biaxial surface phase region from that of
uniaxial surface phase was approached.

When the phase transition was second order for the
ticular surface couplings being considered, a smooth c
tinuous change from a solution withhÞ0 to one with
h50 was obtained. However, when it was first order, a po
was reached at which theCOLENEWalgorithm no longer con-
verged. In this case, the transition point was determined
also usingCOLENEWto compute the uniaxial (h50) solution
in the temperature region just below that at which biax
convergence ended. By comparing the total free energies
unit surface area of the two solutions, the thermodyna
phase boundary was fixed as the temperature at which t
two values were equal.

After a transition point was found, the values of the s
face couplings were changed by a small amount, and an
tial temperature deep in the biaxial region was selected.
procedure described above was then repeated until the
transition point was reached. Finally, the locus of the tran
tion points gave the uniaxial-biaxial phase boundary.

Note that if the starting point is taken in the uniaxial r
gion ~i.e., where theh50 solution is stable! and the above
procedure of using the results for one temperature as
initial guess for the next one is followed, then, upon decre
ing the temperature, one continues to obtain the ‘‘trivia
uniaxial solution in the biaxial region even when it is n
longer the energetically preferred solution. The tempera
at which this uniaxial state is replaced by the biaxial one
the thermodynamic ground state can then be determined
by comparing the free energies of the two solutions.

Our results are summarized graphically in Figs. 2~a!–
2~d!. All were obtained usingCOLENEW and settingr51.
@Physically,r is of O(1) and the phase diagram is not ve
sensitive to the actual value ofr in this range;r51 was
chosen as a representative value.# Figure 2~a! is a three-
dimensional rendition of the phase boundary, in the (t-n-
ñ1) thermodynamic space, between the high-tempera
uniaxial phase and the biaxial surface state. Note that~1! on
part of the phase boundary~dark grey in the figure! the
uniaxial-biaxial transition is first-order, elsewhere it
second-order~light gray!; ~2! the phase boundary intercep
the n50 plane whenñ1*1; and ~3! as expected~see Ap-
pendix A!, whenn→` with ñ1 fixed, the boundary become
asymptotically parallel to the bulk critical planet51.

Cuts of the phase boundary for fixed values ofñ1 are
given in Figs. 2~b! and 2~c!. The boundary’s asymptotic be
havior asn→` is seen clearly in Fig. 2~b! and the line of
tricritical points separating the first- and second-order
gions is shown explicitly in Fig. 2~c!. We see that, at sma
n, the transition is first order; asn increases, it become
second order via a tricritical point. The latter ‘‘slides’’ dow
the surface asñ1 is increased, finally reaching then50 plane
n
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@see the inset of Fig. 2~a!# when ñ1.1. For ñ1*1, the
uniaxial-biaxial phase boundary is second-order for alln val-
ues.

As noted, for smallñ1 values, the surface phase bounda
meets thet51 bulk critical plane at a nonzero~though
small! value ofn. The n value at this intersection point de
creases with increasingñ1, reaching zero atñ1'0.3. For
ñ1*0.3, the transition boundary no longer intersects
t51 plane. This can be seen particularly clearly in Fig. 2~d!,
where we show (t - ñ1) plane cuts of the phase boundary f
fixed values ofn.

C. Effect of the isotropic surface term

As noted in Sec. II A, the expression for the scaled s
face free energy used in Sec. II B was restricted because
of the symmetry-allowed coupling parametersn2 was taken
to be zero. Here we remove this restriction and consider
general case, i.e., Eq.~9! with all three parameters (n, n1,
andn2 or, equivalently,n, ñ1, and ñ2) nonzero.

Inspecting Eq.~9!, we see that the general expression
the surface scaled free energy differs from Eq.~15! only in
the coefficient of m0

2, where (2 1
6ñ1) is replaced by

(2 1
6ñ11

1
2ñ2) when the isotropic term is included. Thus n

qualitative ~topological! changes in the thermodynam
phase diagram found in Sec. II B and summarized in Fig
are expected. Numerical solutions of the Euler-Lagran
equations for the general case confirmed this. As an exam
we show, in Fig. 3, the results obtained usingCOLENEW
when the third surface coupling parameterñ2 is included in
the calculation. Hereñ1 was fixed ~at a value of 0.5!. As
expected, the phase boundaries previously obtained for
caseñ250 @see Figs. 2~a! and 2~b!# shift in accordance with
the sign and magnitude ofñ2, but the topological structure o
the surface phase diagram is unchanged.

D. Effect of fluctuations

The thermodynamic phase diagrams given in Figs. 2
3 were obtained by using the Landau–de Gennes formal
and solving the differential equations minimizing the to
free energy. This procedure, of course, neglected thermo
namic fluctuations and is therefore a mean-field solution
the model. Since, however, we have seen that the trans
to a biaxial phase can be second order, it follows that fl
tuations can have a significant effect on the thermodyna
phase boundaries. Indeed, such fluctuations are expecte
be particularly relevant as the system is essentially two
mensional in character near the onset of the transition
biaxially ordered phase, where the relevant in-plane corr
tion length will be significantly greater than the layer thic
ness. Consequently, we expect, for given surface coup
coefficients, that the biaxial phase boundary actually occ
at a lower temperature than that given by the mean-field fi
solution, and no longer has a mean-field character. We th
fore evaluate, in this section, the effect of these fluctuati
upon the phase diagram.
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FIG. 2. Surface phase diagram in the (t-n- ñ1) thermodynamic space from exact Landau theory calculations.~a! Full three-dimensional
diagram.~b! and ~c! (t-n) plane cuts.~d! (t- ñ1) plane cuts.
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As we are interested in surface phase transitions occur
within a layer whose thickness remains finite, it follows th
these are basically two dimensional in character. Then,
cording to the theory of BKT@19–21#, the relevant fluctua-
tions which must be taken into account near the ph
boundary are long-wavelength in-plane phase variations
the symmetry-breaking order parameter. The latter (h) be-
comes non-zero in the biaxial phase.

In the BKT theory, the long-wavelength fluctuations a
characterized by an effective stiffnessKb , and the part of the
~unscaled! free energy associated with these fluctuations
given by @20,29#
g
t
c-

e
of

s

GBKT5 1
2KbE dx dy~¹u!2, ~16!

where (¹u)25(]xu)
21(]yu)

2 andu is the local angle in the
x-y plane between a principal axis of the order parame
and a fixed in-plane direction. We now put the relevant p
of the fluctuation-sensitive free energy of the NLC system
the form of Eq.~16!, thereby obtaining an expression fo
Kb in terms of the parameters introduced by us in Eq.~2!.
Consider, therefore, the biaxial parth of the order paramete
as given in Eq.~7!. The in-plane fluctuations can be de
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scribed by local variations of the angleu(x,y) defined above
and the in-plane fluctuating part of the order parame
mfluct , can be written as

mfluct5Fcosu 2sinu

sinu cosu G 1A6 Fh~z! 0

0 2h~z!
GF cosu sinu

2sinu cosuG
5

1

A6
h~z!Fcos2u sin2u

sin2u 2cos2uG . ~17!

The free energy associated with phase fluctuations is fo
by substituting Eq.~17! into the gradient~i.e., elastic! terms
in the~unscaled! bulk free energy Eq.~2!. Using Eqs.~3! and
~4!, the latter may be written as

Gfluct5F b4

36g3Gj24 E d3x~m i j ,k
2 1rm i j , jm ik,k!. ~18!

Substituting Eq.~17! into Eq. ~18! and using Eq.~3!, for the
free energy associated with the long-wavelength in-pl
fluctuations we obtain

Gfluct5
1

2 F29 b2

g2 c1~11 1
2r!jE

0

`

dz h2~z!G E dx dy~¹u!2.

~19!

Comparing Eqs.~16! and ~19!, we find that the effective
stiffnessKb for our model is given by

Kb5
2

9

b2

g2 c1~11 1
2r!jE

0

`

dz h2~z!, ~20!

FIG. 3. Surface phase diagram obtained from exact Lan
theory calculations when the additional isotropic term in the surf
free energy, proportional toñ2, is considered.
r,

nd

e

wherej, b, g, c1, andr5c2 /c1 are material-dependent con
stants whose values can be deduced from experimenta
sults @28#. GivenKb , the phase transition temperatureTs of
the BKT model is obtained from the relation

lim
T→Ts

2

Kb5
8

p
kBTs . ~21!

The factor 8 is due to the invariance of the system’s or
parameter with respect top rather than 2p rotations, as is
the case for a conventional magnet@29#. Also, we have ne-
glected the renormalization ofKb due to the presence o
bound disclination pairs in the biaxial state@20,29#. Given
the other approximations made and the estimates to be
for the various parameters, this is reasonable.

The BKT phase transition boundary was calculated as
lows: For the parameters inKb , we used values taken from
the literature @3,28,30# and given in Ref. @22#, i.e.,
b52.43107 ergs/cm3, g52.23107 ergs/cm3, and
c1513.531027 erg/cm. These gavej57.931027 cm. We
assumed thatTs was approximately equal toTNI5350 K
@i.e., (Ts2TNI)/TNI!1# and, as elsewhere, thatr51. For
fixed coupling parameters and temperature, the order par
eter @m(z),h(z)# in the biaxial phase was found and th
effective elastic constantKb at this point was calculated
Then, by scanning in thet direction for fixed values of the
coupling parameters, the scaled temperature at which
~21! is satisfied was found.

The results of our calculations are summarized in Fig
In Figs. 4~a! and 4~b!, two-dimensional (t-n) plane cuts of
the phase diagram are shown, forñ150.5 and 1.5, respec
tively, and ñ250. For comparison purposes, both BKT an
Landau theory results for the phase transition line are giv
Figures 4~c! and 4~d! are also (t-n) plane cuts, with
ñ150.5 and 1, respectively. In both, we show BKT pha
boundaries forñ250 and 0.5 and, for comparison, the La
dau theory transition line forñ250. Finally, in Figs. 4~e! and
4~f!, (t- ñ1) plane cuts showing both BKT and Landa
boundaries forn50.5 and 1.5, respectively, andñ250 are
given. From the figures, the shift to lower temperatures
the transition boundary between the uniaxially and biaxia
ordered surface phases from the Landau~mean-field! posi-
tion for all values of the surface interaction coupling para
eters is clearly evident.

III. DISCUSSION

In this study, we have considered the most gene
symmetry-allowed interaction possible between a NLC s
tem and a planar bounding surface, subject to two conditio
These are~a! the coupling constants are either linearly
quadratically proportional to the magnitudes of compone
of the tensor order parameter at the interface, and~b! the
normal to the surface is a principal axis of the order para
eter. We thus disregard, in particular, nonlocal couplin
e.g., those dependent upon the values of derivatives of
order parameter at the interface@31#, and the additional cou-
pling term appearing in tilt configurations, where a princip
axis of the order parameter makes an acute angle with
surface normal. As regards the former, we note that s
terms are expected to be negligible in our geometry@32#. The

u
e
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FIG. 4. Modified surface phase diagram obtained from the Berezinskii-Kosterlitz-Thouless~BKT! theory of two-dimensional phas
transition. Parts~a! and~b! are (t-n) plane cuts forñ150.5 and 1.5, respectively, andñ250. Parts~c! and~d! are also (t-n) plane cuts; here
the effect of the isotropic term in the surface free energy, proportional toñ2, on the BKT boundary is considered. We present the results
ñ250.5 andñ150.5 and 1, respectively. Parts~e! and~f! are (t-ñ1) plane cuts forn50.5 and 1.5, respectively, andñ250. In all the figures,
both BKT and Landau theory results are shown.
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latter is also not of central importance as our main objec
is to examine the conditions under which BKT-type pha
transitions can occur in a NLC surface layer.

For the interaction potentials that we considered, the s
e
e

r-

face contribution to the free energy is expressed phenom
logically in terms of three parameters@14,15#. All previous
work studying planar boundary conditions@14,18,22–24#
dealt, at different levels of approximation, with only a sing
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parameter, most often that linearly proportional to an or
parameter component@14,18,22,23#. Only in one study@24#
was a quadratic coupling parameter considered.

The mean-field results of Kothekar, Allender, and Ho
reich @23# for the surface phase diagram were obtained
minimizing the free energy exactly usingCOLENEW. The
BKT phase boundary was then calculated by the sa
method discussed in Sec. II D. Kothekar, Allender, a
Hornreich @23# were able to resolve the open questions
maining from earlier limited and approximate studi
@14,18,22# of the same free energy functional.

Hornreich, Kats, and Lebedev@24# used only a single
quadratic surface interaction potential~proportional to
n15 ñ1) to model the surface free energy. In addition, on
three limiting configurations for the allowed phases we
considered: an isotropic or disordered state, a stri
uniaxial one, and a completely biaxial structure. It w
shown, under these conditions, that a continuous isotro
to-biaxial phase transition should occur whenn1 is greater
than some minimum value. Even for the model consider
their surface phase diagram was approximate, as the m
field Euler-Lagrange variational equations were not solv
exactly, and the BKT phase boundary was found by cal
lating the fluctuation-induced shift from the mean-field tra
sition line.

The principal results obtained by us here are presente
Figs. 2–4. In all calculations, the elastic constant ratio w
r51. We found that the phase diagram was not sensitiv
this parameter as long as its value was physically reason
~i.e., in the range 0&r&2). Of course, forñ15 ñ250, our
results reduce to those of Ref.@23#. However, for
n5 ñ250, our results differ from those reported earlier
Hornreich, Kats, and Lebedev@24#. This is due~as they
themselves noted! to the constrained nature of the order p
rameters considered by them. Thus, where they found
gions in which ordered surface states with different symm
tries ~uniaxial and fully biaxial! were respectively preferred
we find only asingleordered state, characterized by biax
order. Of course, this order parameter approaches that
fully biaxial state in the region in which Hornreich, Kats, an
Lebedev found the latter state and, conversely, approa
uniaxiality where those authors reported a stable unia
state. Further, we find that the ordered surface state e
only whenñ1 exceeds a minimum value, and that there is
interval of ñ1 values~beginning at the minimum value note
and terminating at a tricritical value! for which the transition
between the isotropic or fully disordered state and the b
ially ordered surface state is of first-order. The authors
Ref. @24#, whose analytic calculations considered only t
stability limit of their uniaxial state ansatz, were not sensit
to either of these possibilities.

In Figs. 2~b!–2~d!, we present two-dimensional cuts o
the three-dimensional thermodynamic space (t-n-ñ1) shown
in Fig. 2~a!. As expected, we find that a phase transition fro
the ñ1Þ0 high-temperature uniaxial phase~which is
bounded by the fully isotropic phase whenñ150) to the
biaxially ordered surface phase occurs at a tempera
t.1 for almost all values of the coupling paramete
@n,ñ1#. Only whereboth parameters are sufficiently sma
does no transition occur. For somewhat higher@n,ñ1# values,
there is a region in which the transition is first order; th
r
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region is bounded by a line of tricritical points. For high
values of@n,ñ1#, the transition from the high temperature
the biaxial phase is continuous. Ultimately~see Appendix
A!, the continuous transition boundary to the biaxial pha
becomes asymptotically parallel to thet51 plane asn→`
for all ñ1. Note particularly that the second-order transiti
between the high-temperature uniaxial phase and the b
ally ordered surface state occurs for a wide range of@n,ñ1#
values; this, of course, is very desirable as it increases
possibility of observing this phase transition experimenta

The effect of includingñ2 in the theoretical model is to
shift the ñ250 thermodynamic phase boundary shown
Fig. 2~a!, but not to change it in any significant way. A
illustrated in Fig. 3, the phase boundary shifts in accorda
with the sign and magnitude ofñ2, but its form as a function
of n and ñ1 is essentially preserved. Thus the influence
this particular coupling parameter on the phase diagram
less than that of the other two considered in our analysis

Since all Landau theory calculations are necessarily m
field in character, our calculations were extended to inclu
fluctuation effects. This was done by recognizing that, in
critical region, the system is essentially two dimensional
character and that, consequently, the BKT theory is ap
cable. We therefore modified the Landau model calculat
by taking the relevant long-wavelength variations of the
der parameter into account, as discussed in Sec. II D.
results are summarized in Fig. 4, where different tw
dimensional cross sections of the thermodynamic phase
gram are given. At first glance, there are no qualitative d
ferences between the BKT and Landau theory results for
phase boundary; the most obvious effect of the fluctuation
to lower the temperature at which the transition occurs fo
given surface coupling parameter values. However, there
second, more significant, difference as the BKT model
particular to two-dimensional systems. In this case, the b
ial phase doesnot exhibit true long-range order with a non
zero order parameter~as it does in the mean-field Landa
theory! but is instead characterized by algebraic decay
correlation functions. This is a property which one wou
wish to confirm experimentally.

In order to compare our theoretical results with possi
experiments, it is necessary to recast the scaled param
defining the theoretical phase diagram into physical qua
ties. Typical values for the bulk parameters of NLC’s a
given in Sec. II D; from these and experimental studies
follows that the reduced unit of temperaturet51 is of the
order of 0.5 to 1 K@13#. The scaled surface interaction co
pling parametersn, n1, and n2 can be related to physica
values by defining the latter via the expression

gs@e#5~se332
1
2s1eabeab1 1

2s2e i j e i j !d~z2z0!. ~22!

Comparing Eqs.~5! and ~22! and using Eq.~3!, we obtain
relations between the scaled and physical surface free en
parameters. These are

s5
b3j

6A6g2
n, s1,25

b2j

6g
n1,2 ~23!
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Using theb, g, andj values cited in Sec. II D, we find tha
s5n31.5 ergs/cm2, and s1,25n1,233.4 ergs/cm2. These
relations therefore define the range of surface couplings
quired in order to observe the theoretically predicted B
surface phase transition. Reported experimental meas
ments@22,24,33,34# indicate that surfaces characterized
interaction potentials appropriate to observing the predic
phase transition can be prepared.

One possible experimental technique for observing
BKT surface transition is evanescent-wave ellipsometry,
developed by Chenet al. @10#. Here one measures the pha
differenceD betweenp- ands-polarized light incident upon
a liquid crystal-substrate interface and totally reflected at
critical angle. This phase difference is proportional to t
integrated birefringence in the surface plane of the orde
surface layer and can therefore be used, in principle, to de
the phase transition since the biaxial phase is birefring
while the uniaxial one is not. The~mean-field! Landau–de
Gennes theory gives

D;E
0

`

dz h~z!;~ tub2t !1/2, ~24!

where the final expression is valid fort slightly less than
tub, the reduced uniaxial-biaxial transition temperature c
culated from the theory. Thus the critical behavior ofD ap-
pears only through its (tub2t) dependence. This, of cours
is expected as this technique probes a static property of
system and is consequently sensitive only to static crit
properties. Since the deviation from this simple square r
dependence forD when the transition is of the BKT type i
subtle, it would be difficult to verify such a character for th
phase transition by this approach.

To see this, consider the effect of fluctuations on the
havior of our system near the BKT phase transition tempe
ture Ts . It is well known that, in this region, all thermody
namic quantities scale as powers of the correlation len
j1 ~defined as the length over which order persists
T.Ts), which has an essential singularity atTs of the form
@20,21#

j15j expF C

~T2Ts!
1/2G , T.Ts . ~25!

Here C is a positive constant. ForT,Ts , j15`. As a
consequence of the essential~rather than more usual powe
law! character of the singularity, modifications in the sta
critical behavior characteristic of BKT transitions are dif
cult to detect experimentally.

A better approach would be to study the dynamics of
critical behavior by light scattering techniques, as discus
by Hornreich, Kats, and Lebedev@24#. We review the theory
applicable to this technique in Appendix B.

In summary, we have calculated the thermodynam
phase diagram of a semi-infinite nematic liquid crystal s
tem above its bulk ordering temperature for the case of
nar boundary conditions. It was assumed that the latter fa
a uniaxially ordered surface state characterized by a nega
orientational order parameter, at sufficiently high tempe
tures. All symmetry-allowed terms either linearly or qu
dratically proportional to the tensor order parameter cha
e-

re-
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terizing a transition to a biaxial state were included in t
analysis. The Euler-Lagrange equations obtained by m
mizing the Landau–de Gennes expression for the free en
were solved exactly by numerical means. For the region
which the transition was found to be of second order,
considered the effect of fluctuations on this quasi-tw
dimensional system by introducing the Berezinsk
Kosterlitz-Thouless mechanism and evaluating its effect
the phase boundary. The possibilities for observing t
phase transition experimentally were considered and s
potentially useful techniques noted.
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APPENDIX A: ASYMPTOTIC BEHAVIOR
OF THE BIAXIAL PHASE TRANSITION

BOUNDARY AS n˜`

Motivated by the numerical results@23# showing, for
r&0 and ñ15 ñ250, that a biaxial surface state does n
exist for t.1 whenn exceeds a maximum valuenmax(r), we
reanalyzed the Euler-Lagrange equations~11! and associated
boundary conditions, Eqs.~12! and ~13!, in an attempt to
determinenmax(r) analytically. To do this, we sett51 and
ñ15 ñ250, and linearize Eqs.~11! in h and its derivatives
~since the uniaxial-biaxial surface phase transition is
pected to be second-order!, and obtain

~112r/3!m95m26m218m3, ~A1a!

h95h~1112m18m2!. ~A1b!

The boundary conditions atz5` are as given in Eqs
~12!; those atz50 are given by Eqs.~13! with ñ15 ñ250.
Setting (112r/3)5s2 ~note thatr.2 3

2 always @13#!, the
solution of Eqs.~A1a!, ~12a!, and~13a! is

m~z!5 1
2 @12f21exp~z/s!#21, ~A2!

with f215(121/2m0) and m0[m(z50)5 1
4@12(11

32n/A6s)1/2]. In the physical domain 0<z<`, m(z)
,0, and 0<f<1.

Defining t5@12f exp(2z/s)# and using Eq.~A2!, Eq.
~A1b! becomes

t2~12t!2htt2t2~12t!ht2s2~2210t19t2!h50,
~A3a!

with the associated boundary conditions

ht~t512f!5h~t51!50. ~A3b!

The physical domain is now 12f<t<1, ht[dh/dt, etc.
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Equation~A3a! is a second-order linear differential equ
tion for h with regular singular points att50 and 1. The
boundary condition h(t51)50 ensures tha
h;(12t)sA0(t), whereA0(t) goes to a~nonzero! constant
value ast→1. However, in the neighborhood oft50, we
have

h;A1~t!t r11A2~t!t r2, ~A4!

where r 1,25(16A118s2)/2, andA1,2(t) are functions of
t and the parameter (12s). Sincer 1.0 andr 2,0, the be-
havior of h at small t is determined by whetherA2(t) is
greater than, equal to, or less than zero ast→01. In general,
the values ofA1,2 are evaluated by continuing these functio
into the region near thet51 singular point. The value o
nmax is then obtained by determining the value off such that
ht(t512f)50.

A particularly interesting special case isr50 or s51.
HereA2(t) is identically zero and theexact solutionof Eq.
~A3a!, valid for 0<t<1, is h5t2(12t). Since
ht(t50)50, the boundary conditionht(t512f)50
yieldsf51. This in turn givesm0→2` andn→nmax→`.
We therefore conclude thatnmax5` at r50.

Further analysis shows thatA2(t) is positive for 2 3
2

,r,0, and negative forr.0. Consequently,nmax is finite
for 2 3

2,r,0. Its approximate value in this range
nmax(r).A6s(12Q)/8Q2, with Q.0.223(12s)1/3.

APPENDIX B: LIGHT SCATTERING
AT SURFACE PHASE TRANSITIONS

As in Sec. II D, we parametrize the long-wavelength flu
tuations of the symmetry-breaking two-dimensional ord
parameterh by the angular variableu(x,y,t)5u(r ,t). The
time dependence is now written explicitly andr is an x-y
plane position vector. ForT.Ts , the BKT mechanism re-
sults in a finite density of free disclinations which inhib
ordering in the surface layer. It is therefore necessary to t
these disclinations into account. This has been done
smectic-A–C transitions in freely suspended thin films@35#
and, with slight modifications, we can use the express
given there for the director angle correlation function. W
have

G~q,v![^u~q,v!u~2q,2v!&5
2GkBT

v21G2Kb
2~q21j1

22!2
.

~B1!
-
r

ke
or

n

Here u(q,v) is the Fourier transform ofu(r ,t) with two-
dimensional wave vectorq and frequencyv andG is a phe-
nomenological kinetic coefficient~nonsingular atTs) charac-
terizing the relaxation ofu. Its inverse G21 has the
dimension~and physical meaning! of the torsional viscosity
g1 in NLC’s. Both coefficients (G andKb) in Eq. ~B1! are
renormalized by disclinations.

The light-scattering cross section is obtained by evalu
ing the correlation function̂ eab(r ,t)egd(0,0)&. Consider,
for example, an experimental configuration wherein the lig
is in thex-z plane and is initially polarized alongy. Then the
intensity I (q,v) of scattered light due to orientational fluc
tuations is dominated by the correlation function

I ~q,v!5M ^cos2u~q,v!cos2u~2q,2v!&, ~B2!

whereM5ea
2v4/8p2c4 (ea is the dielectric anisotropy o

the NLC, andc the velocity of light! is the standard prefacto
relating light-scattering intensity to the fluctuation corre
tion function.

As shown in@24#, I (q,v) can be written in the form

I ~q,v!5ME d2r dt exp@24g~r ,t !1 ivt2 iq•r #,

~B3a!

with

g~r !5
kBT

4p2Kb
E d2q

q21j1
22

3@12exp„2GKb~q
21j1

22!t1 iq•r …#. ~B3b!

Using Eqs.~B3!, the wave vector dependence of the int
grated intensityI (q)5*dv I (q,v) is

I ~q!}H q2~22x! for qj1@1

j1
2xq22 for qj1!1,

~B4a!

with

x52kBT/pKb . ~B4b!

It follows from Eq. ~21! that, atT5Ts , x5 1
4.

Similarly, the asymptotic dependence ofI (q,v) on q and
v can be derived in various limits@24#. The resulting expres-
sion are
the
I ~q,v!'5
M /vq22x for qj1@1 andv@GKb

M /q2~GKbj1
22!x/2v12~x/2! for qj1@1 andGKbj1

22!v!GKbq
2

M /vq2 for qj1@1 andv!GKbj1
22

M /vj1
x q2 for qj1!1 and allv.

~B5!

Note that, in all these expressions forI (q,v), the critical behavior near the BKT phase transition enters only via
temperature dependence of the correlation lengthj1 .
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